
C++ ile Güvenli Kodlama Eğitimi

Eğitim Hakkında

The C++ Secure Coding training course is designed to introduce programmers to the vulnerabilities that creep into these
applications and how to defend against them. 

The course will start by exploring how security relates to applications and then jumps right into imagining what can go
wrong at any point during the program execution. These issues are addressed by exploring common coding
vulnerabilities that occur during software development, that the programmer may or may not be aware of. Next, the
course explores the results of vulnerabilities, and protecting against them is reinforced by the hands-on labs. Specific
issues surrounding cryptography, client authentication, and overflow conditions will be addressed. The course concludes
with a lesson on how the application of object-oriented design principles, the CERT, and security design principles are
addressed, as well as how the computer architecture and operating system architecture help and sometimes fail to
protect applications.

Neler Öğreneceksiniz

C/C++ programming bugs
Protection principles
Input validation
Improper error and exception handling
Buffer overflow
Stack overflow
Heap overflow
Protection against stack overflow
Address Space Layout Randomization (ASLR)
Secure coding sources 

Eğitim İçeriği

Security 

Types of attacks: denial of service and data mining
 
Vectors of attack: network, libraries, malware
 
Defense in depth
 
Classification of security flaws

İçerenköy Mah. Eski Üsküdar Yolu Cad. Bodur İş Merkezi No:8 Kat:3 D:13, İstanbul, Ataşehir, 34752, Türkiye
www.methodtr.com

https://methodtr.com/


What Could Possibly Go Wrong? 
Always ask: what happens if this fails?
 
What happens if the application crashes?
 
What happens if an exception is thrown?
 
Network problems?
 
Operating system crashes?
 
Protections failure (firewall, physical security, etc)
 
What about programs launched from the application?
 
Where does the application fail to?
 
Fail securely

 

Coding Vulnerabilities 

Input validation: XML injection, SQL injection, path traversal, log forging
 
Race Conditions: time-of-check to time-of-use. memory corruption
 
Time and state
 
Variable parameters
 
Error and exception handling
 
Automatic and controlled data conversions
 
Memory locking, threads, and semaphores
 
File Handling

Cryptography 
Symmetric-key
 
Asymmetric-key
 
Hashing
 
The dependency of randomization
 
Password and key management
 

İçerenköy Mah. Eski Üsküdar Yolu Cad. Bodur İş Merkezi No:8 Kat:3 D:13, İstanbul, Ataşehir, 34752, Türkiye
www.methodtr.com

https://methodtr.com/


Passwords and keys in memory

 

Client Authentication 

Web – basic
 
Web – digest
 
Biometrics
 
Cryptographic
 
Two-factor authentication

Data Overflow 
Buffer overflow
 
Array indexing
 
Stack overflow & Stack smashing
 
Overflow and index on the heap and the stack

 

Security Design Principles 

Fail-safes
 
Mediation: did the data change since last checked?
 
Separation of privileges
 
Least privilege
 
Psychological Acceptability

CERT and Design Principles 
CERT C++ coding standards
 
Addressing CERT requirements
 
Object-oriented design principles and design patterns
 
Testing, unit testing, and test-driven-development

 

Intel Architecture 

İçerenköy Mah. Eski Üsküdar Yolu Cad. Bodur İş Merkezi No:8 Kat:3 D:13, İstanbul, Ataşehir, 34752, Türkiye
www.methodtr.com

https://methodtr.com/


Processors, registers, memory
 
Function calling conventions
 
Stack frame & non-executable (NX) memory areas
 
Recursion
 
Address space layout randomization

 

Third-Party Code 

Any code that is not your own, including other internal groups
 
Package management
 
Vetting third-party code: source, reverse compilers
 
Monitoring network connections

İçerenköy Mah. Eski Üsküdar Yolu Cad. Bodur İş Merkezi No:8 Kat:3 D:13, İstanbul, Ataşehir, 34752, Türkiye
www.methodtr.com

https://methodtr.com/

